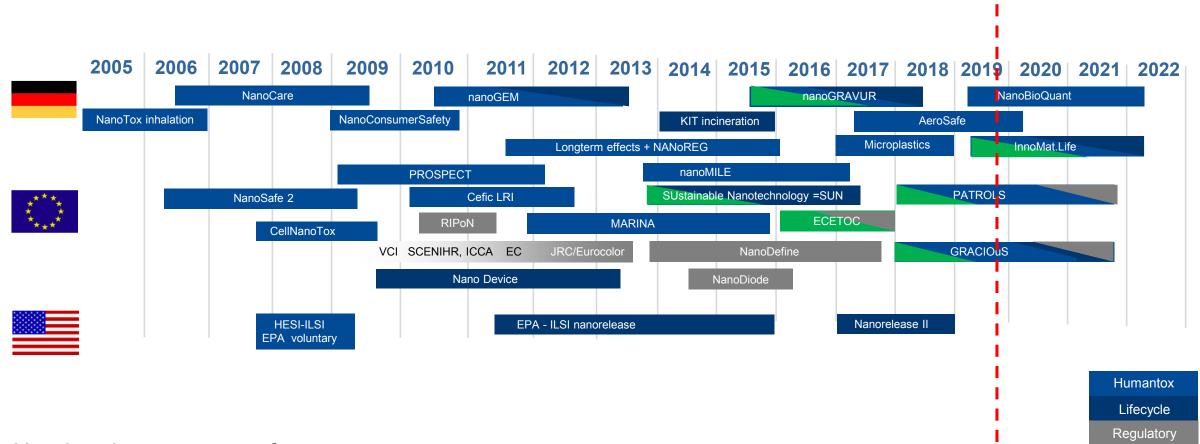
The needs of industry for techniques for registration

Wendel Wohlleben


Senior Principle Scientist, Dept Material Physics and Dept. Experimental Toxicology & Ecology

Concluding Conference 5th - 6th of September 2019, Vienna

NanoFA

Exploring the implications: BASF nanosafety research

Need to demonstrate safe use: 95% for conventional materials, now considered as nanoforms 5% for novel materials, using SbyD processes

Ecotox

Urgent questions in view of the REACH requirements for 2020

Which properties are necessary to establish "sets of similar nanoforms" ?

- ▶ Manufacturing output ~ nanoform \rightarrow set (BASF) \rightarrow set (all producers) \rightarrow EUCLID
- Justification required, must consider human & environmental hazard, and exposure.
- Which properties & (functional) assays are necessary & sufficient to assess similarity for grouping?
 Are methods applicable beyond Ag, instead to industrially prioritized materials?
- Which compartments shall be prioritized for environmental RA?
- If the regulator insists on testing aquatic toxicity how shall we test hydrophobic / instable materials?

Rules for "sets" and their grouping or read-across need validation by TG results

Nanomaterial (type and designation of sub-type)	Ecotoxilogical profile (sensitivity of organisms)	Magnitude of ecotoxicity (most sensitive organism) within the group (range of EC50 [mg/L])
CuPhthalo_nano;	algae = daphnids = FE	
CuPhthalo_halogen	algae > daphnids, FE	
SiO ₂ untreated; _amino; _phosphonate	algae > daphnids, FE	10^{-2} 10^{-1} 1 10^{2} 10^{2} ∞
Fe ₂ O ₃ _larger	algae > daphnids, FE	
CeO ₂ NM213	algae > daphnids, FE	
ZnO NM110; NM111; NM113	algae > daphnids > FE	
Fe ₂ O ₃ _nano_A; nano_B	algae > daphnids, FE	10 ⁻³ 10 ⁻¹ 10 ¹
CeO ₂ NM-211, NM212; Eu doped	algae > daphnids, FE	
TiO ₂ NM-104; NM-105;	algae > daphnids, FE	
Eu doped, Fe doped, undoped		
Ag Batch SRM 110525,	daphnids > algae > FE	
NM-300K	algae = daphnids > FE	10^{-3} 10^{-1} 10^{1}
nCu	algae = daphnids > FE	
CuO	daphnids > algae > FE	
Ag Batch 1340	daphnids > algae > FE	10-3 10-1 101

Magnitude of ecotoxicity (most Nanomaterial (type / sub-type) Release of sensitive organism) within the group toxic ions (range of EC50 [mg/L]) Batch SRM 110525, Aq Batch 1340, NM-300K 10-1 101 10 YES nCu NM110, NM111, NM113 ZnO CuO CeO₂ NM-211, NM212, NM213, Eu doped Fe₂O₃ nano A, nano B, larger SiO₂ untreated, amino, phosphonate CuPhthalo nano; halogen NM-104, NM-105, Eu doped, Fe doped, TiO undoped

Fig. 6. Terrestrial hazard scoring for 25 tested ENM.

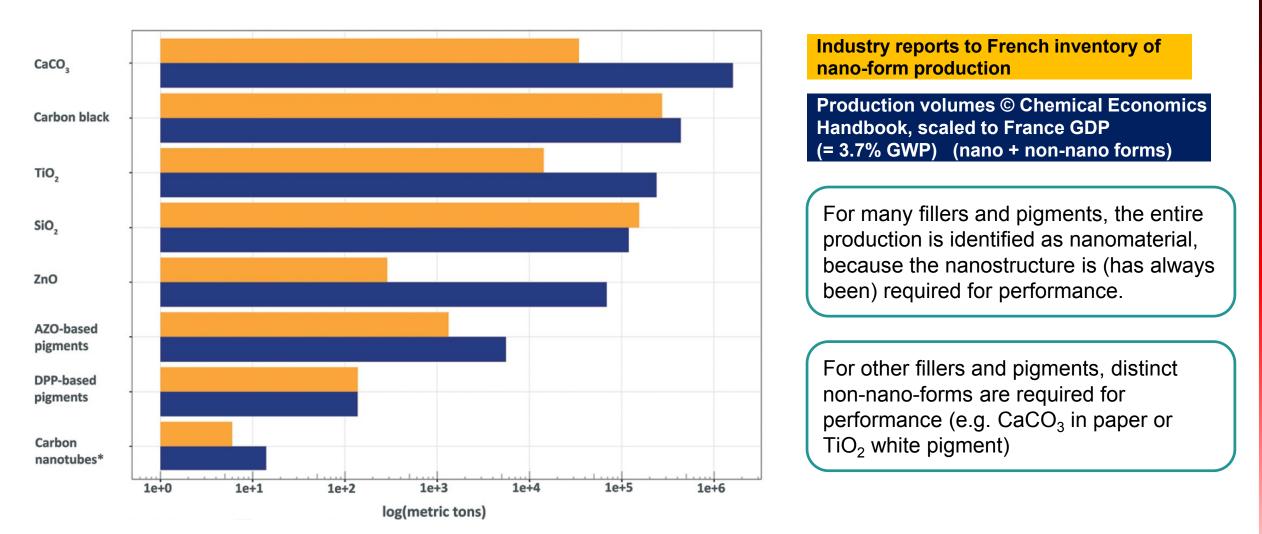
Env. hazard ranks by substance.

Which (functional) assays are required and valid to demonstrate that "environmental hazard assessment can be performed jointly" for a set of similar NFs ? NanoFASE??

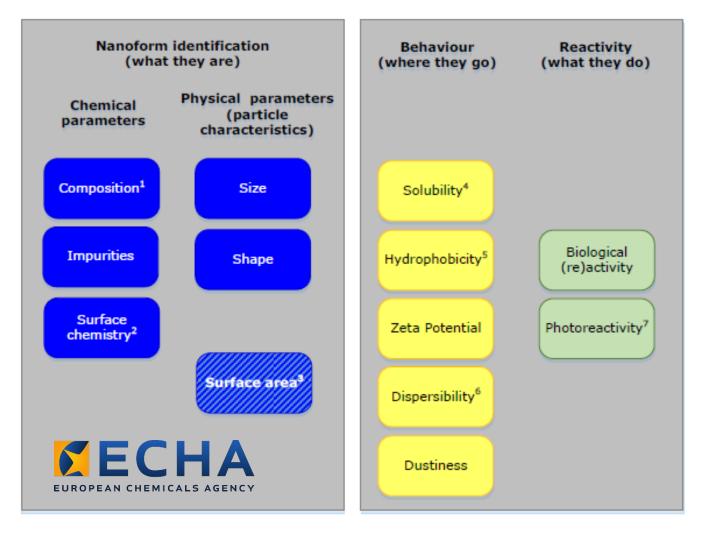
D. Kuehnel et al. (nanoGRAVUR, May 2019) *NanoImpact*: doi: 10.1016/j.impact.2019.100173

Fig. 4. Aquatic hazard scoring of 25 tested NM.

	Nom générique	Bande de tonnage
	Carbon black	> 100 000 t
	Silicon dioxide	> 100 000 t
	Calcium carbonate	10 000 t à 100 000 t
	Titanium dioxide	10 000 t à 100 000 t
	Boehmite (AI(OH)O)	1000 t à 10 000 t
	Copolymère de chlorure de vinylidène	1000 t à 10 000 t
	Silicic acid, magnesium salt	1000 t à 10 000 t
	Aluminium oxide	1000 t à 10 000 t
	Polychlorure de vinyle	1000 t à 10 000 t
	Mélange réactionnel de dioxyde de cérium et de dioxyde de zirconium	1000 t à 10 000 t
	Calcium 4-[(5-chloro-4-methyl-2- sulphonatophenyl)azo]-3-hydroxy-2-naphthoate	1000 t à 10 000 t
	Kaolin	100 t à 1000 t
	3,6-bis-biphenyl-4-yl-2,5-dihydropyrrolo[3,4- c]pyrrole-1,4-dione	100 t à 1000 t
	Iron hydroxide oxide yellow	100 t à 1000 t
	Aluminium hydroxide	100 t à 1000 t
• [Diiron trioxide	100 t à 1000 t
	Iron hydroxide oxide	100 t à 1000 t
	3,6-diphenyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4- dione	100 t à 1000 t


Conventional nanomaterials dominate national registers, whereas Ag is not very representative to validate methods or models

nts	2,2'-[(3,3'-dichloro[1,1'-biphenyl]-4,4'- diyl)bis(azo)]bis[N-(2,4-dimethylphenyl)-3- oxobutyramide]	100 t à 1000 t
pigments	3,6-bis(4-chlorophenyl)-1H,2H,4H,5H-pyrrolo[3,4- c]pyrrole-1,4-dione	100 t à 1000 t
	3-hydroxy-N-(o-tolyl)-4-[(2,4,5- trichlorophenyl)azo]naphthalene-2-carboxamide	100 t à 1000 t
anic	3,6-Bis(4-tert-butylphenyl)-2,5-dihydropyrrolo[3,4- c]pyrrole-1,4-dione	100 t ă 1000 t
Org	2-Propenoic acid, 2-methyl-methyl ester, polymer with 1,3-butadiene, butyl 2-propenoate and ethenylbenzene	100 t à 1000 t

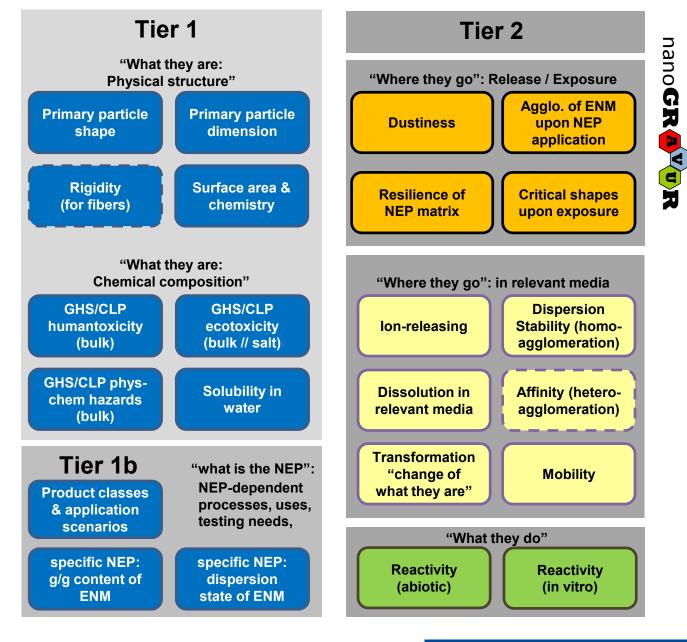


Use elements of grouping to demonstrate similarity between nanoforms (NF) to register "sets of similar NFs"

"what they are": physical structure, chemical composition.

"where they go": release & fate

"what they do": hazard screening


Comprehensive grouping of occup., env., consumer risk: nanoGRAVUR framework

"what they are": physical structure, chemical composition.

"what is nano-enabled product (NEP)": system integration / formulation

"where they go": release & fate

"what they do": hazard screening

2 of 34 Case Studies: ZnO uncoated vs coated

different surface chemistry

			_			
Properties with numerical values	NM110_ZnO	NM111_ZnO				
Composition		7-6T-6F6T				
Primary particle dimension	42	80				
Specific surface area (BET/VSSA)	12	14				
	30	67.9				
	38	24.3				
Surface Chemistry (measured)						
	38	4.3				
	3	3.5				
Surface charge (zeta-potential)	30	-25				
Hyd ro ph ob icit y	10	152				
NEP class & intended use scenarios	sun s	creen				
Specific NEP: g/g content of ENM	10	10				
Dustine ss						
Critical shapes upon exposure (forfibres)						
Agglo. of ENM upon NEP application						
Dispersion stability (environ. homoaggl.)	29	36				
Solubility in water	0.6	0.1				
Ion releasing in relevant environ. media	2.3	2.4				
Dissolution rate in relevant human media	204	177				
Mobility (in soils)						
Re activity (abiotic)	3.4 2.8 43 151	25 20				
Reactivity(in vitro) NR8383 cells	2.8	5.6				
Reactivity(in vitro) NR8383 cells	11.3	11.3				
Reactivity (in vitro) NR8383 cells	11.3	22.5		10	0.24	044
Reactivity (in vitro) NRB383 cells	0	0	U	12.	J .2	0.14

same Tier 2 bands (in dissolution)

	data reduction of numerical properties and qualitative descriptors into property ranges	NM110_ZnO	NM111_ZnO	
	Primary particle shape	1	1	
	Primary particle dimension	2	2	
	Composition	410	410	
	Surface Chemistry (descriptive)	1	3	
	Hydrophobicity	0	1	
	NEP class & intended use scenarios	sun se	creen	
		2	2	
	Specific NEP: dispersion state of ENM		1	
			2	
	Specific NEP: g/g content of ENM	1	1	
	Dustiness			
	Dispersion stability (environ. homoaggl.)	1	1	
	Mobility (in soils)			
	Attachment +B68:AP68to algae			
	Solubility in water	3	3	
	Ion releasing in relevant environ. media	1	1	
	Dissolution (environmental perspective)	0	0	
	Transformation (environmental perspective)	0	0	
	Dissolution & Transformation (human perspective)	1	1	
	Reactivity (abiotic)	4	4	
8, K	Reactivity (in-vitro) , human perspective	3	3	
- , - ,				-

Wohlleben, Kuhlbusch et al, Nanoscale 2019; DOI: 10.1039/c9nr03306h

similar ecotoxicity

	NOAEC (rat, STIS) mg/m ³	EC50 (algae) mg/L	EC50 (daphnids) mg/L	EC50 (FET) mg/L	EC50 (soil micro flora) mg/kg
DPP_nano	>30	N.d.	N.d.	N.d.	N.d.
DPP_non-nano	>30	N.d.	N.d.	N.d.	N.d.
CuPhtalo_nano	>30	>100	>100	>100	>1000
CuPhtalo_halogen		>100	>100	>100	>1000
Fe2O3_nano_A	30	3.6	>100	>100	>1000
Fe2O3_nano_B		2.4	>100	>100	>1000
Fe2O3_larger	30	111	>100	>100	>1000
SiO2_untreated	2.5	14	>100	>100	>1000
SiO2_amino	>50	29	>100	>100	>1000
SiO2_phosphonate	>50	46	>100	>100	>1000
NM203_SiO2_hydrophil	1.0	N.d.	N.d.	N.d.	N.d.
NM211_CeO2	<0.5	8.5	>100	>100	>1000
NM212_CeO2	<0.5	5.6	>100	>100	>1000
CuO (PlasmaChem)	0.6	1.4	0.3	≈30%	~1000
				effect at	
				100 mg/ L	
NM110_ZnO	N.d.	0.1	3.4	>100	118
NM111_ZnO coated	0.5	0.1	8.3	>100	173
NM105_TiO2_nano	<2	4.7	N.d.	N.d.	N.d.
NM104	N.d.	63	N.d.	N.d.	N.d.
NM400_CNT	<0.5	N.d.	N.d.	N.d.	N.d.
NM220_BaSO4	50	N.d.	N.d.	N.d.	N.d.
quartz DQ12	0.1	N.d.	N.d.	N.d.	N.d.

Human hazards (BASF, RIVM): In vivo inhalation (rat, 28d evaluation) Ecological toxicity (UFZ, Fraunhofer IME): OECD 201, 202, 236; ISO 15655.

9

Reactivity (photo-)

16

Interim Summary: nanoform registration of conventional materials

NanoDefine identification: tonnages reported to French inventory are plausible.

nanoGRAVUR framework: harmonized methods and benchmark materials

- Dissolution and transformation are least modulated by different NFs within one substance,
- Dustiness, dispersion stability, abiotic and in vitro surface reactivity vary more often between NFs
- Benchmark materials span the dynamic range, calibrate the significance of dissimilarities

nanoGRAVUR 34 case studies.

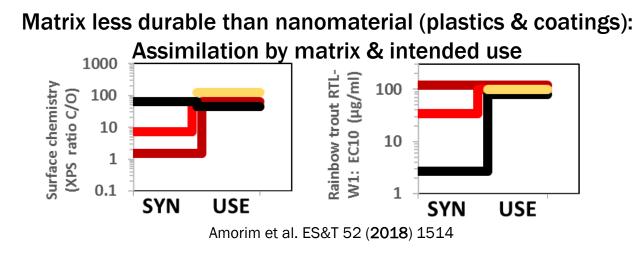
- Within one substance, high similarity of different NFs of SiO₂, BaSO₄, kaolin, CeO₂, ZnO, organic pigments, especially when comparing forms that are all untreated on the surface.
- Different Fe₂O₃ or TiO₂ (nano)forms differ more significantly
- GRACIOUS draft framework: Purpose-adjusted level of similarity; floating instead of fixed bands
 NanoFASE models: sensitivity of fate & transport against differing NF properties


Nanoscale (2019) c9nr03306h Env. Sci. Nano 6 (2019) 1443 NanoImpact (2019) 100154 ES&T 52 (2018), 1514 Nanoscale Advances 1 (2019) 781 NanoImpact 12 (2018) 29

Challenges, especially for pigments:

Establishment of organism-specific most realistic exposure scenario

- What are the Risk Assessment consequences of the first nano-specific TG (318), if most materials have "intermediate stability" at some ph/Ca/NOM ?
 Isn't hetero-agglomeration anyway dominant? -> NanoFASE
- Testing of dissolved vs. particulate fraction vs. "nano-fraction"
 - Why discard (hetero)agglomerates, if that is the only realistic form of exposure? potential pre-settling time for NM dispersions?
 - exposure stability of NM in different test media (± 20%) for up to 7 days study duration??
- Differentiate intrinsic toxicity vs. physical effects
 Adapt sample prep for pelagic vs. bentic organisms
 Testing only stable fractions vs. spiked sediments?



Testing the relevant (nano)form

NanoFASE put emphasis on testing the relevant transformation (of ENM that easily transform: Ag)
 But only few applications release ENM, instead more often fragments of nano-enabled products
 Using the ISO TC229, PG29 "NanoRelease" categories:

Nanomaterial less durable than matrix (biocides): Assimilation by dissolution or transformation:

Pantano et al, ES&T 52 (2018) 1128

GRACIOUS will consider the form that is released for grouping of NEPs
 Similarity primarily determined by intended use & NEP matrix, least by ENM

Urgent questions in view of the REACH requirements for 2020 with help from nanoFASE

Which properties are necessary to establish "sets of similar nanoforms" ?

- ▶ Manufacturing output ~ nanoform \rightarrow set (BASF) \rightarrow set (all producers) \rightarrow EUCLID
- Justification required, must consider human & environmental hazard, and exposure.

Which properties & (functional) assays are necessary & sufficient to assess similarity for grouping?
Are methods applicable beyond Ag, instead to industrially prioritized materials?
nanoGRAVUR case studies on grouping of ENM and NEP: *Nanoscale*, in print.

Which compartments shall be prioritized for environmental RA?

If the regulator insists on testing aquatic toxicity – how shall we test hydrophobic / instable materials?

...confronting a deadline of January 2020, but guidance from ECHA is sparse, and many OECD TGs are in development or under revision

Will we have to re-test once the guidance & TGs are available?

13